Recurrence relation $$F_0 = 0, \quad F_1 = 1$$
and $$F_n=F_{n-1} + F_{n-2}$$ for $ n > 1 $
The first 20 Fibonacci numbers $F_n$ are:
$ F_0 $ | $ F_1 $ | $ F_2 $ | $ F_3 $ | $ F_4 $ | $ F_5 $ | $ F_6 $ | $ F_7 $ | $ F_8 $ | $ F_9 $ | $ F_{10} $ | $ F_{11} $ | $ F_{12} $ | $ F_{13} $ | $ F_{14} $ | $ F_{15} $ | $ F_{16} $ | $ F_{17} $ | $ F_{18} $ | $ F_{19} $ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 | 34 | 55 | 89 | 144 | 233 | 377 | 610 | 987 | 1597 | 2584 | 4181 |
The sequence is (0, 1, 1, 2, 3, 5, 8, 13, … )
$$ {F_{k+2} \choose F_{k+1}} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} {F_{k+1} \choose F_{k}} $$
$$ \vec F_{k+1} = \mathbf{A} \vec F_{k} $$
$$ \vec F_n = \mathbf{A}^n \vec F_0 $$
To get the eigen values, solve $$ \begin{vmatrix} 1 - \lambda & 1 \\ 1 & -\lambda \end{vmatrix} = 0 $$
\begin{align} (1-\lambda)(-\lambda) - 1 & = 0 \\ (\lambda)(\lambda - 1) - 1 & = 0 \\ \lambda^2 - \lambda -1 & = 0 \end{align}
If we denote the eigen values as $ \lambda_1, \lambda_2 $, this tells us that
$$ \lambda_1 + \lambda_2 = 1, \quad \lambda_1 \lambda_2 = -1 $$
Solving the quadratic equation, we get $$ \left( \lambda_1, \lambda_2 \right) = \left( \frac{1+\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2} \right) $$ Also, note $$ \lambda_1 - \lambda_2 = \sqrt{5} $$
To get the eigen vectors, solve $$ \begin{bmatrix} 1 - \lambda & 1 \\ 1 & -\lambda \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} $$
Expanding
\begin{align} (1-\lambda) x_1 + x_2 & = 0 \\ x_1 & = \lambda x_2 \end{align}
From the characteristic equation of $ \mathbf{A} $, we know
\begin{align} & (1-\lambda)(-\lambda) - 1 = 0 \\ \Rightarrow \quad & (1-\lambda) = -\frac{1}{\lambda} \end{align}
Substituting for $1-\lambda$, we get
\begin{align} -\frac{1}{\lambda} x_1 + x_2 & = 0 \\ x_1 & = \lambda x_2 \end{align}
So both equations simplify to $$ x_1 = \lambda x_2$$
which gives the eigen vector matrix as $$ \Lambda = \begin{bmatrix} \lambda_1 & \lambda_2 \\ 1 & 1 \end{bmatrix} $$
\Rightarrow\quad
from here.
\left( … \right)
from here.