User Tools

Site Tools


math

correlation

t-statistic for correlation, $r$ \[ t = r \sqrt{\frac{n-2}{1-r^2}} \]

The reverse equation is \[ r = \frac{t}{\sqrt{t^2 + n-2}} \]

Derivation of the reverse equation: \begin{align*} & t = r \sqrt{\frac{n-2}{1-r^2}} & \\ & \frac{t^2}{r^2} = \frac{n-2}{1-r^2} & \\ & \frac{t^2}{n-2} = \frac{r^2}{1-r^2} & \\ & \frac{t^2}{t^2 + n-2} = r^2 & \\ & r = \sqrt{\frac{t^2}{t^2 + n-2}} & \end{align*}

See also:

sec(x) + tan(x)

\begin{align*} \sec x + \tan x & = \tan \left( \frac{x}{2} + \frac{\pi}{4} \right) \\ & = \sqrt{\frac{1 + \sin x}{1 - \sin x}} \end{align*}

I came across this simplification while reading https://liorsinai.github.io/mathematics/2020/08/27/secant-mercator.html which talks about the integral of the secant which in turn has applications in Mercator map.

pages in this wiki

pages with math outside of this wiki

websites for elementary school math

math.txt · Last modified: 2024/05/09 20:15 by raju